Distributed James Server — Database benchmarks
This document provides basic performance of Distributed James Server databases, benchmark methodologies as a basis for a James administrator who can test and evaluate if his Distributed James Server databases are performing well.
It includes:
-
A sample deployment topology
-
Propose benchmark methodology and base performance for each database. This aims to help operators to quickly identify performance issues and compliance of their databases.
Sample deployment topology
We deploy a sample topology of Distributed James Server with these following databases:
-
OpenDistro 1.13.1 as search engine: 3 nodes, each node has 8 OVH vCores CPU and 30 GB memory limit (OVH b2-30 instance).
-
RabbitMQ 3.8.17 as message queue: 3 Kubernetes pods, each pod has 0.6 OVH vCore CPU and 2 GB memory limit.
-
OVH Swift S3 as an object storage
-
Apache Cassandra 4 as main database: 3 nodes, each node has 8 OVH vCores CPU and 30 GB memory limit (OVH b2-30 instance).
With the above system, our email service operates stably with valuable performance. For a more details, it can handle a load throughput up to about 1000 JMAP requests per second with 99th percentile latency is 400ms.
Benchmark methodologies and base performances
We are willing to share the benchmark methodologies and the result to you as a reference to evaluate your Distributed James Server' performance. Other evaluation methods are welcome, as long as your databases exhibit similar or even better performance than ours. It is up to your business needs. If your databases shows results that fall far from our baseline performance, there’s a good chance that there are problems with your system, and you need to check it out thoroughly.
Benchmark OpenSearch
Benchmark methodology
Benchmark tool
We use opensearch-benchmark - an official OpenSearch benchmarking tool. It provides the following features:
-
Automatically create OpenSearch clusters, stress tests them, and delete them.
-
Manage stress testing data and solutions by OpenSearch version.
-
Present stress testing data in a comprehensive way, allowing you to compare and analyze the data of different stress tests and store the data on a particular OpenSearch instance for secondary analysis.
-
Collect Java Virtual Machine (JVM) details, such as memory and garbage collection (GC) data, to locate performance problems.
How to benchmark
To install the opensearch-benchmark
tool, you need Python 3.8+ including pip3 first, then run:
python3 -m pip install opensearch-benchmark
If you have any trouble or need more detailed instructions, please look in the detailed installation guide.
Let’s see which workloads (simulation profiles) that opensearch-benchmark
provides:
.
For our James use case, we are interested in opensearch-benchmark list worloads
workload: pmc
.Full-text benchmark with academic papers from PMC
Run the below script to benchmark against your OpenSearch cluster:
opensearch-benchmark execute_test --pipeline=benchmark-only --workload=[workload-name] --target-host=[ip_node1:port_node1],[ip_node2:port_node2],[ip_node3:port_node3] --client-options="use_ssl:false,verify_certs:false,basic_auth_user:'[user]',basic_auth_password:'[password]'"
In there:
-
--pipeline=benchmark-only: benchmark against a running cluster
-
workload-name: the workload you want to benchmark
-
ip:port: OpenSearch Node' socket
-
user/password: OpenSearch authentication credentials
Sample benchmark result
PMC worload
| Metric | Task | Value | Unit |
|---------------------------------------------------------------:|------------------------------:|------------:|--------:|
| Min Throughput | index-append | 734.63 | docs/s |
| Mean Throughput | index-append | 763.16 | docs/s |
| Median Throughput | index-append | 746.5 | docs/s |
| Max Throughput | index-append | 833.51 | docs/s |
| 50th percentile latency | index-append | 4738.57 | ms |
| 90th percentile latency | index-append | 8129.1 | ms |
| 99th percentile latency | index-append | 11734.5 | ms |
| 100th percentile latency | index-append | 14662.9 | ms |
| 50th percentile service time | index-append | 4738.57 | ms |
| 90th percentile service time | index-append | 8129.1 | ms |
| 99th percentile service time | index-append | 11734.5 | ms |
| 100th percentile service time | index-append | 14662.9 | ms |
| error rate | index-append | 0 | % |
| Min Throughput | default | 19.94 | ops/s |
| Mean Throughput | default | 19.95 | ops/s |
| Median Throughput | default | 19.95 | ops/s |
| Max Throughput | default | 19.96 | ops/s |
| 50th percentile latency | default | 23.1322 | ms |
| 90th percentile latency | default | 25.4129 | ms |
| 99th percentile latency | default | 29.1382 | ms |
| 100th percentile latency | default | 29.4762 | ms |
| 50th percentile service time | default | 21.4895 | ms |
| 90th percentile service time | default | 23.589 | ms |
| 99th percentile service time | default | 26.6134 | ms |
| 100th percentile service time | default | 27.9068 | ms |
| error rate | default | 0 | % |
| Min Throughput | term | 19.93 | ops/s |
| Mean Throughput | term | 19.94 | ops/s |
| Median Throughput | term | 19.94 | ops/s |
| Max Throughput | term | 19.95 | ops/s |
| 50th percentile latency | term | 31.0684 | ms |
| 90th percentile latency | term | 34.1419 | ms |
| 99th percentile latency | term | 74.7904 | ms |
| 100th percentile latency | term | 103.663 | ms |
| 50th percentile service time | term | 29.6775 | ms |
| 90th percentile service time | term | 32.4288 | ms |
| 99th percentile service time | term | 36.013 | ms |
| 100th percentile service time | term | 102.193 | ms |
| error rate | term | 0 | % |
| Min Throughput | phrase | 19.94 | ops/s |
| Mean Throughput | phrase | 19.95 | ops/s |
| Median Throughput | phrase | 19.95 | ops/s |
| Max Throughput | phrase | 19.95 | ops/s |
| 50th percentile latency | phrase | 23.0255 | ms |
| 90th percentile latency | phrase | 26.1607 | ms |
| 99th percentile latency | phrase | 31.2094 | ms |
| 100th percentile latency | phrase | 45.5012 | ms |
| 50th percentile service time | phrase | 21.5109 | ms |
| 90th percentile service time | phrase | 24.4144 | ms |
| 99th percentile service time | phrase | 26.1865 | ms |
| 100th percentile service time | phrase | 43.5122 | ms |
| error rate | phrase | 0 | % |
----------------------------------
[INFO] SUCCESS (took 1772 seconds)
----------------------------------
References
The opensearch-benchmark
tool seems to be a fork of the official benchmark tool EsRally of Elasticsearch.
The opensearch-benchmark
tool is not adopted widely yet, so we believe some EsRally references could help as well:
Benchmark RabbitMQ
Benchmark methodology
Benchmark tool
We use rabbitmq-perf-test tool.
How to benchmark
Using PerfTestMulti for more friendly:
-
Provide input scenario from a single file
-
Provide output result as a single file. Can be visualized result file by the chart (graph WebUI)
Run a command like below:
bin/runjava com.rabbitmq.perf.PerfTestMulti [scenario-file] [result-file]
In order to visualize result, coping [result-file] to
.
Start webserver to view graph by the command:/html/examples/[result-file]
bin/runjava com.rabbitmq.perf.WebServer
Then browse: http://localhost:8080/examples/sample.html
Sample benchmark result
-
Scenario file:
[{'name': 'consume', 'type': 'simple',
'uri': 'amqp://james:eeN7Auquaeng@localhost:5677',
'params':
[{'time-limit': 30, 'producer-count': 2, 'consumer-count': 4}]}]
-
Result file:
{
"consume": {
"send-bytes-rate": 0,
"recv-msg-rate": 4330.225080385852,
"avg-latency": 18975254,
"send-msg-rate": 455161.3183279743,
"recv-bytes-rate": 0,
"samples": [{
"elapsed": 15086,
"send-bytes-rate": 0,
"recv-msg-rate": 0,
"send-msg-rate": 0.06628662335940608,
"recv-bytes-rate": 0
},
{
"elapsed": 16086,
"send-bytes-rate": 0,
"recv-msg-rate": 1579,
"max-latency": 928296,
"min-latency": 278765,
"avg-latency": 725508,
"send-msg-rate": 388994,
"recv-bytes-rate": 0
},
{
"elapsed": 48184,
"send-bytes-rate": 0,
"recv-msg-rate": 3768.4918347742555,
"max-latency": 32969370,
"min-latency": 31852685,
"avg-latency": 32385432,
"send-msg-rate": 0,
"recv-bytes-rate": 0
},
{
"elapsed": 49186,
"send-bytes-rate": 0,
"recv-msg-rate": 4416.167664670658,
"max-latency": 33953465,
"min-latency": 32854771,
"avg-latency": 33373113,
"send-msg-rate": 0,
"recv-bytes-rate": 0
}]
}
}
-
Key result points:
Metrics | Unit | Result |
---|---|---|
Publisher throughput (the sending rate) |
messages / second |
3111 |
Consumer throughput (the receiving rate) |
messages / second |
4404 |
Benchmark S3 storage
Benchmark methodology
Benchmark tool
We use s3-benchmark tool.
How to benchmark
-
Make sure you set up appropriate S3 credentials with
awscli
. -
If you are using a compatible S3 storage of cloud providers like OVH, you would need to configure
awscli-plugin-endpoint
. E.g: Getting started with the OVH Swift S3 API -
Install
s3-benchmark
tool and run the command:
./s3-benchmark -endpoint=[endpoint] -region=[region] -bucket-name=[bucket-name] -payloads-min=[payload-min] -payloads-max=[payload-max] threads-max=[threads-max]
Sample benchmark result
We did S3 performance testing with suitable email objects sizes: 4 KB, 128 KB, 1 MB, 8 MB.
Result:
--- SETUP --------------------------------------------------------------------------------------------------------------------
Uploading 4 KB objects
100% |████████████████████████████████████████| [4s:0s]
Uploading 128 KB objects
100% |████████████████████████████████████████| [9s:0s]
Uploading 1 MB objects
100% |████████████████████████████████████████| [8s:0s]
Uploading 8 MB objects
100% |████████████████████████████████████████| [10s:0s]
--- BENCHMARK ----------------------------------------------------------------------------------------------------------------
Download performance with 4 KB objects (b2-30)
+-------------------------------------------------------------------------------------------------+
| Time to First Byte (ms) | Time to Last Byte (ms) |
+---------+----------------+------------------------------------------------+------------------------------------------------+
| Threads | Throughput | avg min p25 p50 p75 p90 p99 max | avg min p25 p50 p75 p90 p99 max |
+---------+----------------+------------------------------------------------+------------------------------------------------+
| 8 | 0.6 MB/s | 36 10 17 22 36 57 233 249 | 37 10 17 22 36 57 233 249 |
| 9 | 0.6 MB/s | 30 10 15 21 33 45 82 234 | 30 10 15 21 33 45 83 235 |
| 10 | 0.2 MB/s | 55 11 18 22 28 52 248 1075 | 55 11 18 22 28 52 249 1075 |
| 11 | 0.3 MB/s | 66 11 18 23 45 233 293 683 | 67 11 19 23 45 233 293 683 |
| 12 | 0.6 MB/s | 35 12 19 22 43 55 67 235 | 35 12 19 22 43 56 67 235 |
| 13 | 0.2 MB/s | 68 11 19 26 58 79 279 1037 | 68 11 19 26 58 80 279 1037 |
| 14 | 0.6 MB/s | 43 17 20 24 52 56 230 236 | 43 17 20 25 52 56 230 236 |
| 15 | 0.2 MB/s | 69 11 16 23 50 66 274 1299 | 69 11 16 24 50 66 274 1299 |
| 16 | 0.5 MB/s | 52 9 19 31 81 95 228 237 | 53 9 19 31 81 95 229 237 |
+---------+----------------+------------------------------------------------+------------------------------------------------+
Download performance with 128 KB objects (b2-30)
+-------------------------------------------------------------------------------------------------+
| Time to First Byte (ms) | Time to Last Byte (ms) |
+---------+----------------+------------------------------------------------+------------------------------------------------+
| Threads | Throughput | avg min p25 p50 p75 p90 p99 max | avg min p25 p50 p75 p90 p99 max |
+---------+----------------+------------------------------------------------+------------------------------------------------+
| 8 | 3.3 MB/s | 71 16 22 28 39 66 232 1768 | 73 16 23 29 43 67 233 1769 |
| 9 | 3.6 MB/s | 74 9 19 23 34 58 239 1646 | 75 10 20 24 37 59 240 1647 |
| 10 | 2.9 MB/s | 97 16 21 24 48 89 656 2034 | 99 17 21 26 49 92 657 2035 |
| 11 | 3.0 MB/s | 100 10 21 26 39 64 1049 2029 | 101 11 21 27 40 65 1050 2030 |
| 12 | 3.0 MB/s | 76 12 19 24 44 56 256 2012 | 77 13 20 25 48 69 258 2013 |
| 13 | 6.1 MB/s | 73 10 13 20 43 223 505 1026 | 74 10 15 21 43 224 506 1027 |
| 14 | 5.5 MB/s | 81 11 15 23 51 240 666 1060 | 82 12 16 23 54 241 667 1060 |
| 15 | 2.7 MB/s | 80 10 19 28 43 59 234 2222 | 84 11 25 34 47 60 236 2224 |
| 16 | 18.6 MB/s | 58 10 19 26 61 224 248 266 | 61 10 22 29 65 224 249 267 |
+---------+----------------+------------------------------------------------+------------------------------------------------+
Download performance with 1 MB objects (b2-30)
+-------------------------------------------------------------------------------------------------+
| Time to First Byte (ms) | Time to Last Byte (ms) |
+---------+----------------+------------------------------------------------+------------------------------------------------+
| Threads | Throughput | avg min p25 p50 p75 p90 p99 max | avg min p25 p50 p75 p90 p99 max |
+---------+----------------+------------------------------------------------+------------------------------------------------+
| 8 | 56.4 MB/s | 41 12 26 34 43 57 94 235 | 136 30 69 100 161 284 345 396 |
| 9 | 55.2 MB/s | 53 19 32 39 50 69 238 247 | 149 26 84 117 164 245 324 655 |
| 10 | 33.9 MB/s | 74 17 27 37 50 77 456 1060 | 177 29 97 134 205 273 484 1076 |
| 11 | 57.3 MB/s | 56 26 35 44 57 71 251 298 | 185 40 93 129 216 329 546 871 |
| 12 | 37.7 MB/s | 66 21 33 43 58 73 102 1024 | 202 24 81 125 205 427 839 1222 |
| 13 | 57.6 MB/s | 59 24 35 40 58 71 275 289 | 215 40 94 181 288 393 500 674 |
| 14 | 47.1 MB/s | 73 18 46 56 66 75 475 519 | 229 30 116 221 272 441 603 686 |
| 15 | 58.2 MB/s | 65 11 40 51 63 75 260 294 | 243 29 132 174 265 485 831 849 |
| 16 | 23.1 MB/s | 96 14 46 55 62 80 124 2022 | 278 31 124 187 249 634 827 2028 |
+---------+----------------+------------------------------------------------+------------------------------------------------+
Download performance with 8 MB objects (b2-30)
+-------------------------------------------------------------------------------------------------+
| Time to First Byte (ms) | Time to Last Byte (ms) |
+---------+----------------+------------------------------------------------+------------------------------------------------+
| Threads | Throughput | avg min p25 p50 p75 p90 p99 max | avg min p25 p50 p75 p90 p99 max |
+---------+----------------+------------------------------------------------+------------------------------------------------+
| 8 | 58.4 MB/s | 88 35 65 79 88 96 288 307 | 1063 458 564 759 928 1151 4967 6841 |
| 9 | 50.4 MB/s | 137 32 52 69 145 286 509 1404 | 1212 160 471 581 1720 2873 3744 4871 |
| 10 | 58.2 MB/s | 77 46 54 66 77 98 275 285 | 1319 377 432 962 1264 3232 4266 6151 |
| 11 | 58.4 MB/s | 97 32 63 72 80 91 323 707 | 1429 325 593 722 1648 3020 6172 6370 |
| 12 | 58.5 MB/s | 108 26 65 81 91 261 301 519 | 1569 472 696 1101 1915 3175 4066 5110 |
| 13 | 56.1 MB/s | 115 35 69 83 93 125 329 1092 | 1712 458 801 1165 2354 3559 3865 5945 |
| 14 | 58.6 MB/s | 103 26 70 78 88 112 309 656 | 1807 789 999 1269 1998 3258 5201 6651 |
| 15 | 58.3 MB/s | 113 31 55 67 79 134 276 1490 | 1947 497 1081 1756 2730 3557 3799 3974 |
| 16 | 58.0 MB/s | 99 35 67 79 96 146 282 513 | 2091 531 882 1136 2161 6034 6686 6702 |
+---------+----------------+------------------------------------------------+------------------------------------------------+
We believe that the actual OVH Swift S3' throughput should be at least about 100 MB/s. This was not fully achieved due to network limitations of the client machine performing the benchmark.
Benchmark Redis
Benchmark methodology
We can use the built-in redis-benchmark utility.
The tool is easy to use with good documentation. Just to be sure that you specify the redis-benchmark to use multi-thread if it runs against a multi-thread Redis instance.
Example:
redis-benchmark -n 1000000 --threads 4
Benchmark Cassandra
Benchmark methodology
Benchmark tool
We use cassandra-stress tool - an official tool of Cassandra for stress loading tests.
The cassandra-stress tool is a Java-based stress testing utility for basic benchmarking and load testing a Cassandra cluster. Data modeling choices can greatly affect application performance. Significant load testing over several trials is the best method for discovering issues with a particular data model. The cassandra-stress tool is an effective tool for populating a cluster and stress testing CQL tables and queries. Use cassandra-stress to:
-
Quickly determine how a schema performs.
-
Understand how your database scales.
-
Optimize your data model and settings.
-
Determine production capacity.
There are several operation types:
-
write-only, read-only, and mixed workloads of standard data
-
write-only and read-only workloads for counter columns
-
user configured workloads, running custom queries on custom schemas
How to benchmark
Here we are using a simple case to test and compare Cassandra performance between different setup environments.
keyspace: stresscql
keyspace_definition: |
CREATE KEYSPACE stresscql WITH replication = {'class': 'SimpleStrategy', 'replication_factor': 3};
table: mixed_workload
table_definition: |
CREATE TABLE mixed_workload (
key uuid PRIMARY KEY,
a blob,
b blob
) WITH COMPACT STORAGE
columnspec:
- name: a
size: uniform(1..10000)
- name: b
size: uniform(1..100000)
insert:
partitions: fixed(1)
queries:
read:
cql: select * from mixed_workload where key = ?
fields: samerow
Create the yaml file as above and copy to a Cassandra node.
Insert some sample data:
cassandra-stress user profile=mixed_workload.yml n=100000 "ops(insert=1)" cl=ONE -mode native cql3 user=<user> password=<password> -node <IP> -rate threads=8 -graph file=./graph_insert.xml title=Benchmark revision=insert_ONE
Read intensive scenario:
cassandra-stress user profile=mixed_workload.yml n=100000 "ops(insert=1,read=4)" cl=ONE -mode native cql3 user=<user> password=<password> -node <IP> -rate threads=8 -graph file=./graph_mixed.xml title=Benchmark revision=mixed_ONE
In there:
-
n=100000: The number of insert batches, not number of individual insert operations.
-
rate threads=8: The number of concurrent threads. If not specified it will start with 4 threads and increase until server reaches a limit.
-
ops(insert=1,read=4): This will execute insert and read queries in the ratio 1:4.
-
graph: Export results to graph in html format.